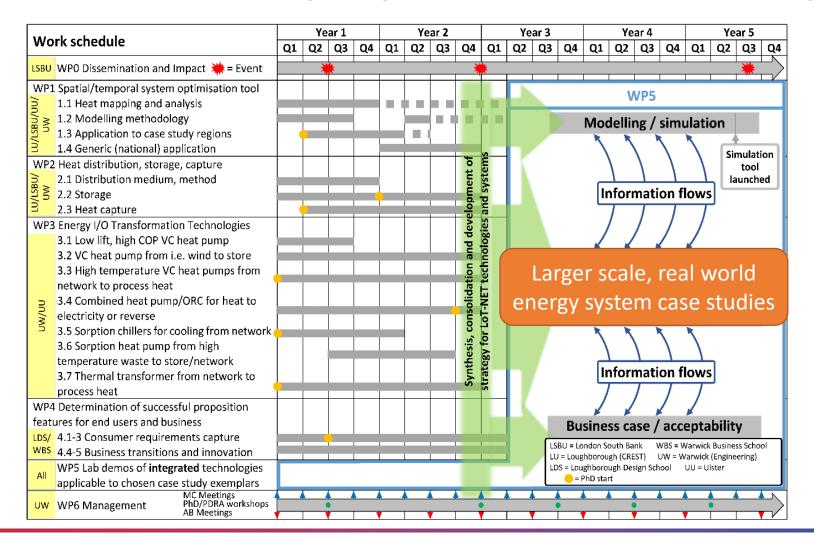
LOT-NET

Advisory Board Meeting 5th October 2021 Parts 2: Case Studies Update


Low Temperature Heat Recovery and Distribution Network Technologies

Agenda

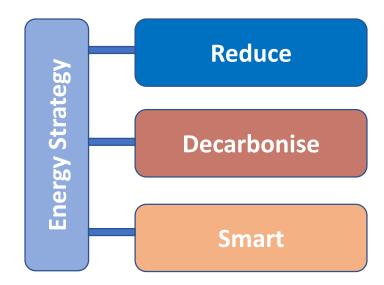
- Reminder: Ambitions for the Case Studies
 - Larger scale, real world smart local energy system case studies
 - 4th/5th Generation Energy Networks including "LoT-NETs"
- Updates from the case studies
 - Case Study: Loughborough
 - Case Study: Islington
 - Case Study: Warwick
- Discussion & Summary

LoT-NET Phase 2: Including larger scale real world energy systems

Case Studies: A reminder

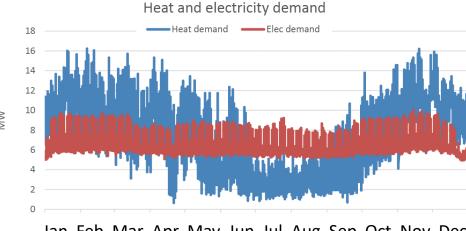
- Islington: GreenSCIES. An integrated, Smart Local Energy System (SLES) for a community within the London Borough of Islington. The system is based around an ambient-temperature heat network loop with distributed energy assets such as heat pumps, solar photovoltaic and the flexible integration of electric vehicles.
- Loughborough town. Modelling a town. Using modelling to assess different network options that can deliver a net zero heating solution for the domestic dwellings in the town of Loughborough.
- The University of Warwick. The campus as a multi-vectoral SLES: electricity, heating, cooling and rising transport demand from EVs. Upgrading district heating to a LoT-NET to achieve scope 1&2 net zero emissions by 2030 & scope 3 by 2050. Resolving consumption vs supply at multiple levels: Campus Level (Energy 2020) and a "smarter" part of campus (Smart Square).

Case Studies: Last AB we discussed....


- What will the CCC's 20% of heating from heat networks actually be?
- How can LoT-NETs help PFER projects be integrated, multi-vectoral systems, not just an assembly of activities?
- How can LoT-NETs make local energy systems smart and flexible?

 Updates from the Case studies will focus on progress in understanding the role of a LoT-NET and specific LoT-NET technologies/insights in the cases.

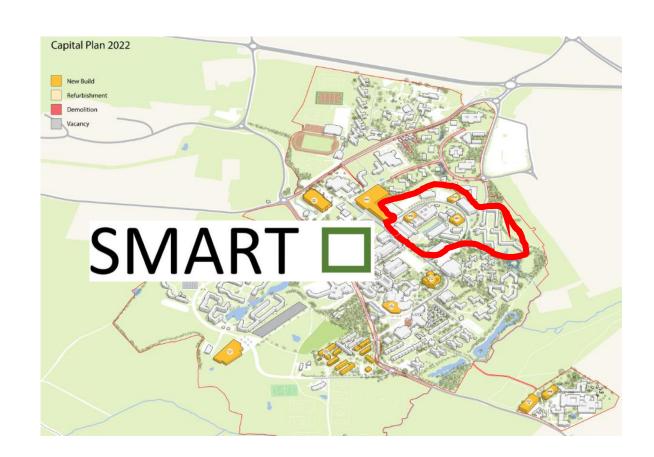
Case Study Warwick – The Integrated Campus Case


- University of Warwick Campus
 - ~£10Mpa spend, community of 34,000
 - Net Zero for Scope 1&2 by 2030
 - Net Zero for Scope 3 by 2050
- Energy & Infrastructure Strategy
- Updates on....
 - Energy 2020 campus level system that decarbonises supply
 - Smart Square smart, integrated system using a LoT-NET
 - HNDU Project UoW/EE/Sweco/BEIS TEF project
 - The Warwick Standard better buildings, new and retrofit
 - Management of Energy Networks becoming a local DSO

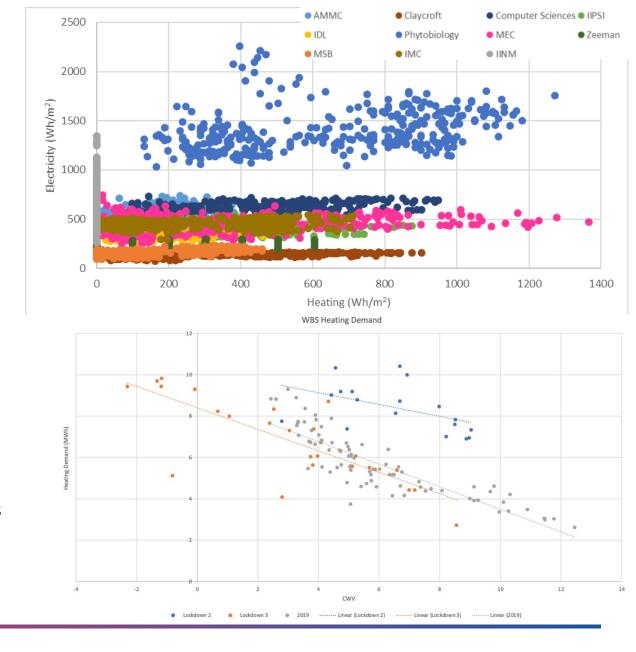


Case Study: Warwick – Energy 2020

- Energy 2020 consists of
 - Onsite PV generation (6MW) with battery storage (1MW) and electrical network improvements
 - Campus level ground source Heat Pump (1.4MW).
 - This allows central CHP use to be halved over time and starts shifting district heating from central supply to distributed heat sources & storage.
- Progress since last AB
 - PV etc costed & advancing for investment approval
 - Central HP: preferred approach at the moment is to evaluate the Smart Square LoT-NET further

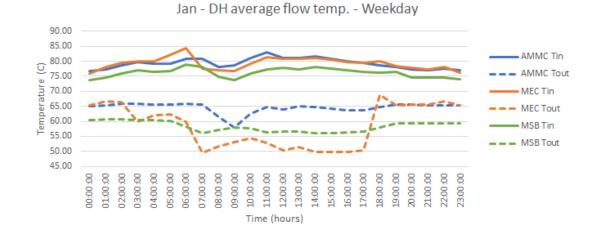

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

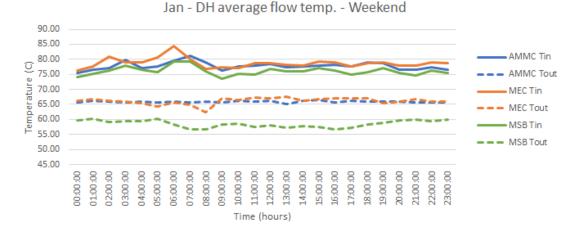
Case Study: Warwick – Smart Square


- Smart Square represents 10% of the University of Warwick Campus
 - 17 buildings, mixed use, 1992-2019
 - 50:50 heat and power use
 - ~£1Mpa energy spend
- Upgrading to include
 - Better buildings, smarter controls
 - A LoT-NET
 - Integrated management across power, heating, cooling and transport.
 - A transactive energy platform.
 - Developing flexibility

Smart Square since last AB

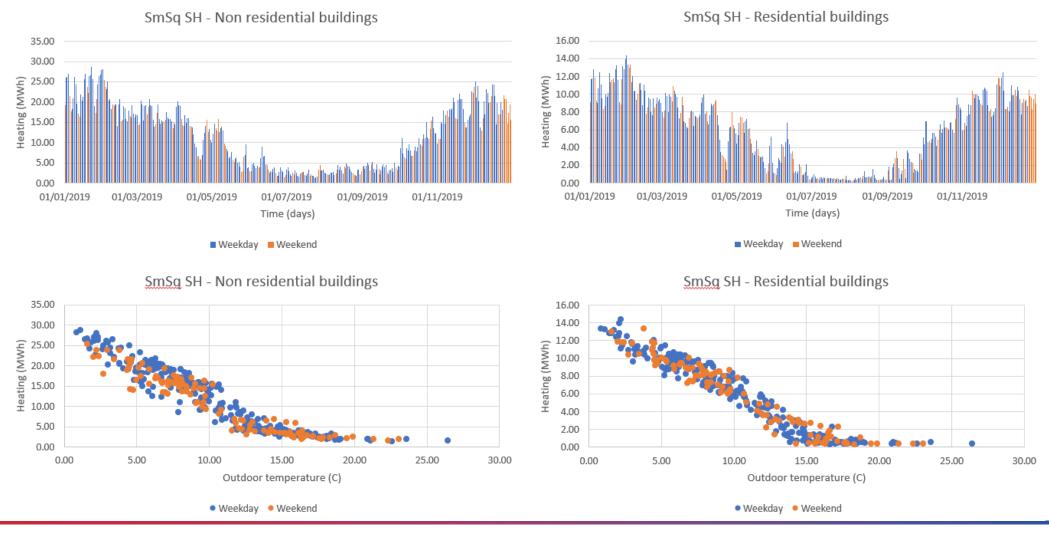
- Investment approved to create LoT-NET "loop"
 - Evaluating what HPs to put where see HNDU project
- Lessons from lockdown: adding heating to electricity
 - Extending work on electricity use to support use of IT cloud services
 - Work on WBS (Solman, UKERC funded) where heat use in full lockdown only fell 6-8%
 - Covid ventilation requirements after full lockdown increased WBS heat use 30-70% depending on outside temperature.
 - New RA to expand this heat analysis to Smart Square
- Smart Square review of building controls
 - Reviews of key assets and actions by Honeywell, Schneider and building managers completed
 - BMS optimisation "Quick wins" offer 600tCO2e (10%) emissions savings for cost of £186k and annual savings of £124k
 - Targeted evaluation programmes for "out of control" buildings
 - Restart consideration of transactive energy when current actions underway





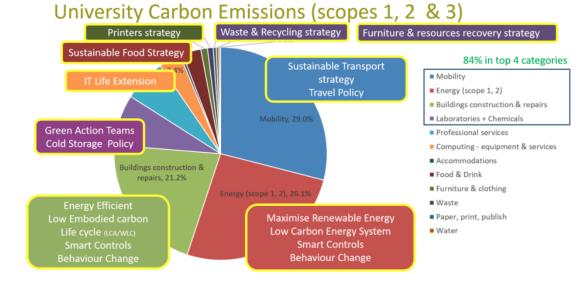
Case Study: Warwick – Smart Square HNDU project

Details


- Developing modelling capabilities to design the LoT-NET for Smart Square
- BEIS/HNDU supported project with Element Energy, Sweco and UoW
- Progress since last AB
 - Project established; some ongoing debates on outputs!
 - Data collection complete
 - Overall: Flow 75-85°C, Return 50-65°C
 - Modelling with Thermos, energyPRO and TRNSYS underway

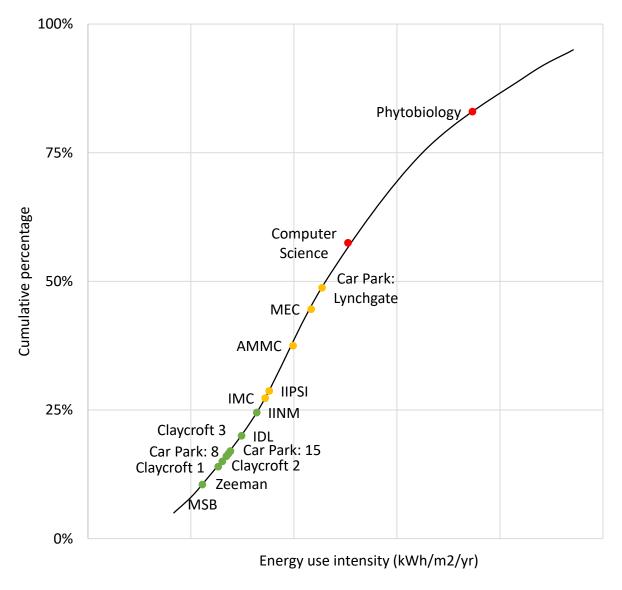


Case Study: Warwick – Smart Square Space Heating


Case Study: Warwick – Smart Square Hot Water

Case Study: Warwick – Warwick Standard

- Applying the standard to Smart Square
 - 9 out of the 17 buildings are top quartile vs building standards
 - Two new buildings on campus have received RIBA awards
- Scope 3 Emissions Details
 - UoW Scope 3 emissions estimated as 93,000 tCO2e in 2019/20 vs Scope 1+2 of 38,000
 - Construction & repairs was 21% of emissions
 - IBRB example: 50% manufactured offsite


Case Studies: Summary & Discussion

- Three cases:
 - Urban SLES (4,000-33,000): Integration around a LoT-NET, PFER DD
 - Town (70,000): Modelling capability to deliver net zero heat at minimal cost
 - Campus SLES (34,000 community): Developing a LoT-NET, PFER DD-linked
- Questions for discussions after the break
 - How do LoT-NETs move us on from existing ideas of heat networks?
 - How do the technologies we are developing move us on from existing ideas of HPs?
 - How can these areas of knowledge best inform the current debate?

Back-up slides

Building	Total energy real (kWh/m2)	Total good practice energy benchmark (kWh/m2)	Total good practice energy benchmark Weather adjust (kWh/m2) +3%	Total typical energy benchmark (kWh/m2)	Total typical energy benchmark Weather adjust (kWh/m2) +3%
IMC	256.78	240.94	248.17	331.34	341.28
Claycroft 1	198.48	245.00	252.35	294.00	302.82
Claycroft 2	195.76	245.00	252.35	294.00	302.82
Claycroft 3	205.35	245.00	252.35	294.00	302.82
Computer Science	402.35	225.46	232.22	348.18	358.63
Zeeman	167.99	224.18	230.91	345.37	355.73
IDL	204.05	227.32	234.14	392.46	404.23
IIPSI	263.50	232.01	238.97	393.54	405.35
Phytobiology	533.25	263.40	271.30	310.88	320.21
IINM	251.92	247.80	255.23	348.71	359.17
AMMC	301.62	255.40	263.06	330.28	340.19
MSB	144.07	224.70	231.44	382.55	394.03
MEC	305.18	246.02	253.40	310.15	319.45
DAC	Not applicable	230.84	237.77	289.30	297.98
Car Park: 8	3.63	4.60	4.74	6.60	6.80
Car Park: 15	3.58	4.60	4.74	6.60	6.80
Car Park: Lynchgate	6.69	4.60	4.74	6.60	6.80

